Using Neural Networks in River Level Prediction - case study of the river la Leche-Peru

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The rugged geographical relief of Peru determines a particular hydrological regime; this includes our Region, which is also under the effect of meteorological phenomena such as El Niño and La Niña that occur unpredictably and whose effects we feel with heavy rains ans floods in the north of Peru, for which we consider essential to be able to forecast river levels, in particular the river La Leche, for this we use the Black-Sholes-Merton stochastic differential equation of the river level, as an input along with other parameters mesaured by meteorological stations within the area of influence of the La Leche river basin, together with an LSMT Neural Network that was trained with data downloaded but conditioned, making forecasts 6, 12, 18 and 24 hours in advance. The performance tests of the obtained neural networks demostrated a high adaptation of the solution to the hydrological model since the NSE is very close to unity; Besides that, the average error is minimal, RMSE of the order of 0.002, and the absolute error is of the order of 0.007.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2021 IEEE International Conference on Machine Learning and Applied Network Technologies, ICMLANT 2021
EditoresManuel Cardona, Vijender Kumar Solanki
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665449502
DOI
EstadoPublicada - 2021
Evento2021 IEEE International Conference on Machine Learning and Applied Network Technologies, ICMLANT 2021 - Virtual, Soyapango, El Salvador
Duración: 16 dic. 202117 dic. 2021

Serie de la publicación

NombreProceedings of the 2021 IEEE International Conference on Machine Learning and Applied Network Technologies, ICMLANT 2021

Conferencia

Conferencia2021 IEEE International Conference on Machine Learning and Applied Network Technologies, ICMLANT 2021
País/TerritorioEl Salvador
CiudadVirtual, Soyapango
Período16/12/2117/12/21

Nota bibliográfica

Publisher Copyright:
© 2021 IEEE.

Huella

Profundice en los temas de investigación de 'Using Neural Networks in River Level Prediction - case study of the river la Leche-Peru'. En conjunto forman una huella única.

Citar esto